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1 Introduction

Time-lapse photography, in which images are cap-
tured at a lower rate than that at which they will
ultimately be played back. Classic time-lapse pho-
tography subjects are scenes. Today, most of those
image sequences are collected by the thousands of In-
ternet cameras. They typically provide outdoor views
of cities, construction sites, traffic, the weather, or
natural phenomena. However, Time-lapse photog-
raphy can create an overwhelming amount of data.
Image compression reduces the storage requirements,
but the resulting data has compression artifacts and
is not very useful for further analysis [9]. In addi-
tion, it is currently difficult to edit the images in a
time-lapse sequence .

A key challenge in dealing with time-lapse data
is to provide a representation that efficiently reduces
storage requirements while allowing useful scene anal-
ysis and advanced image editing. In our project,
given a sequence of images, we want to be able to
model the scene with few parameters. We will focus
on time-lapse image sequences of outdoor scenes un-
der clear-sky conditions[6]. The camera viewpoint
is fixed and the scene is mostly stationary, hence
the predominant changes in the sequence are changes
in illumination. As a preprocessing procedure, We
would use a sky mask to preprocess the images. With
clear sky assumption, we would extract the sky from
every image show in Figure 1(b) using GIMP.

The road map for the report is that we first start
with some background clarification about the prop-
erties of outdoor scenes. Then I will explain how to
use Maximum Likelihood Estimation(MLE) to com-
pute intrinsic image and illumination images. Fur-
thermore, we will use those information to find the
shadow map of every single image and if a point
is in shadow, it is considered as a missing value.
Therefore, using Expectation Maximization to solve
Probabilistic PCA with missing data will give us a

(a) A single image from our dataset

(b) A sky mask model from one of our dataset

Figure 1: Sky mask

compacted representation of the dataset. I will also
demonstrate how I can use Markov Random Field to
smooth out the shadow region at the end.

2 Background and Compari-
son Model

Intrinsic images are a useful mid-level description of
scenes proposed by Barrow and Tenenbaum [1]. An
image is decomposed into two images: a reflectance
image and an illumination image as shown in figure
2. Finding such a decomposition remains a difficult
problem in computer vision. Here we focus on a
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Figure 2: An image is decomposed into two images:
a reflectance image and an illumination image

slightly easier problem: given a sequence of images
where the reflectance is constant and the illumina-
tion changes, we cam recover illumination images and
a single reflectance image. We will denote the input
by I(z,y) the input image and use R(z,y) the re-
flectance image and L(z,y) the illumination image
and I(z,y) = L(z,y)R(z,y)

We would compare our result with the model being
proposed in [9] and [8]. Their method is to convert
time-lapse photography captured with outdoor cam-
eras into Factored Time-Lapse Video (FTLV): a video
in which time appears to move faster and where data
at each pixel has been factored into shadow, illumina-
tion, and reflectance components. The factorization
allows a user to easily relight the scene, recover a por-
tion of the scene geometry (normals), and to perform
advanced image editing operations. The key formu-
lation for their approach is the following

Isky (t) = Wskstk:y(t)
Isun(t) - Wsuanun(t + 9)

where H represent a basis curve scaled by per pixel
weight W. the term Sy, (t) is a term indicating shad-
ows. They used basis curves describing the changes
of intensity over time, together with per-pixel offsets
and scales of these basis curves, which capture spatial
variation of reflectance and geometry

3 Reflectance and Illumination
Image Extraction

Given a sequence of T images, we want to solve for
L(z,y,t) and R(z,y,t). However, we need to add
some more constrains. Since we have a sequence of
images, we would constrained the problem of solving

one reflectance image as constant over time and only
the illumination image changes. Another constrain
is that we use a prior that assumes that illumination
images will give rise to sparse filter outputs applied to
L will tend to be sparse. We derive the ML estimator
under this assumption and show that it gives a simple
algorithm for recovering reflectance. Figure 3 illus-
trates this fact: the image of the outdoor scene has
a histogram distribution that are peaked at zero and
fall off much faster than a Gaussian. This property
is robust enough that it continues to hold if we apply
a pixel wise log function to each image. These proto-
typical histograms can be well fit by a Laplacian dis-
tribution as shown in Figure 3 as P(z) = £ exp~/7.

We will therefore assume that when derivative fil-
ters are applied to L(z,y,t) the resulting filter out-
puts are sparse: more exactly, we will assume the
filter outputs are independent over space and time
and have a Laplacian density. Assume we have N fil-
ters { f,} we denote the filter outputs by oy, (z,y,t) =
I * f,. then r, = R f,, denotes the reflectance im-
age filtered by the nth filter. Assume filter outputs
applied to L(z,y,t) are Laplacian distributed and in-
dependent over space and time. Then the ML esti-
mate of the filtered reflectance image 7, are given by
T (x,y) = medianion,(x,y,t). This is derived by as-
suming Laplacian densities and independence which
gives

1
P(op|rn) = 5 H e Blon(@,y,t)=rn(z,y,t)

z,y,t
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Maximizing the likelihood is equivalent to minimiz-
ing the sum of absolute deviations from o, (x,y,t).
Therefore, applying ML, we achieved the filtered re-
flectance image 7,,. To recover r, the estimated re-
flectance function, I will use the formulation derived
in [10]. Once we computed the estimated R(x,y),
then in log space, log(L(x,y,t)) = log(I(x,y,t)) —
log(R(z, 1))

4 Probabilistic PCA with Miss-
ing Values

Once we achieved the L(z,y,,t), I used a threshold
value t to determine if a pixel is in shadow or not.
If the intensity of L(x,y,t) < t then I say this pixel
is in shadow otherwise it is not. Then on my origi-



(a) Original Image

Lidsiibades

(b) histograms of horizontal derivative
filter outputs
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ter outputs

9 05 0 05 1
x
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Figure 3: We use a prior motivated by the statistics
of natural scenes

nal data set I, pixel I(x,y,t) = NaN which means I
considered this pixel is missing value. According to
the [5] Shashua proved that three images are suffi-
cient to span the full range of images of a Lamber-
tian scene rendered under distant lighting and a fixed
viewpoints. Now I want to compute the top principle
component of the sequence of images I(x,y,t with
missing values, I will use Probabilistic PCA to solve
it [3],[7],[4].

Let y € RP denote a data vector where D = maxn,
m and n are the size of the I(z,y) input image.
r € R? denotes the vector of the principle compo-
nent coordinates. Here, we will only use the top 3
component, so d = 3. We let

p(x) = N(z;0,1)
p(ylz) = N(y; CTz,01)

Where C is a dxD matrix with the projection vectors
form the principal componeet coordinates to the data
coordinates. The conditional on x given y is then
given by

p(zly) = N(z; 1, )
p=o2%Cy
sl =I=0l-2)CCT

When only a subset of the coordinates of y is ob-
served, we replace C' C above with the C, which has
only the columns corresponding to the observed val-
ues, and similar for y which is replaced by the ob-
served part y,.

Our goal is now to find the parameters C and that
maximize the likelihood of some observed data: vec-
tors y that are fully or partially observed. To do
so, we use an EM algorithm that estimates in the E-
step the missing values: the vectors x and the miss-
ing parts of the y which we denote by y,. In the
M-step we fix these estimates, and maximize the ex-
pected joint log-likelihood of x and y. For simplic-
ity we assume that the distribution over x and y,
factors so that we write a lower-bound on the data
log-likelihood as

log p(yo) = log p(yo) — D(q(z)q(yn)||p(z; yn|yo))

= H(q(z) + H(q(yn)) + Eq[log p(z) + log p(y|z)]

where H = Llog|Z|. Now we can maximize this
bound. In the E-step with respect to the distributions
q, and in the M-step with respect to the parameters.



In the E-step
q(yn) = exp / q(z)log p(zn|z) = N(yn; CL T, 0%1)
q(z) = p(zlyo)eﬂcp/q(yh)logp(yhlx) = N(z;07%2C7,%)

where 7 is the mean of ¢(yp,) for the missing values
and y, for the observed part, and z is the mean of
q(x).

In the M-step The expectation can be summed over
N data, we can write it as

lighting trame 100

E,[log p(z) + log p(y|z)] =

ND 1
o logo? — ﬁ(z |19 — CTfn”Q - TT{CTEC})

hame 113 retiactance

Dy 1 e N
—@%zd ~ 3 En: [[7nl]® — ETT{E}

lighting trame 113

where D}, denotes the total number of missing values,
and 0,4 is the current value of o that was used in the
E-step to compute the g. Maximizing this over C' and
o we get

C == (NZ + XXT)_].XYT hame 124 reliactance

1 _ _
o’ = W(XTT{CTZC} + Zn: n — CT 2| + Drolyy)

where X and Y denote matrices that collect all Z and
4 columns.

5 Result

I have two datasets, one is a scene with a telescope
and the other is a far view of University of Arizona.
Both dataset satisfy the requirement of time lapse
images where the camera is fixed still and images are
take every 10 minutes.
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In figure 4 and figure 5, we can see a sequence
of six outdoor images. The left upper corner image
is the original image, the right upper image is the
reflectance image which does not change over time.
The left lower image is the illumination image and
the right corner image is the reconstructed image by
multiplying R(z,y)zL(x,,t) The result illumination
image is much more helpful in determine the shadow
image.

Figure 4: Four Images from the telescope dataset

In figure 6, we can see the same six outdoor scene
images. The upper image is the original image, the
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Figure 5: Two more images from the telescope

dataset.

black and write image is the shadow map where black
meaning it is in shadow and white meaning it is not
in shadow. (The result here shown has not applied by
the sky mask yet) Then the third image is the recon-
structed using the top three principle components.
We we can see, the region that is in the shadow will
become "NaN” and they are filled in with appropri-
ate images. In order to reconstruct the RGB color
image, I computed each channel separately.

6 Discussion

The result seems to be on the right track. However
there are some unsolved issues.

1. The reconstructed color image has some weird
color effects. For example, there are some very
green region or very red region. This might due
to the fact that I computed the RGB channel in-
dependent of each other. I might need to model
the correlation between the three channels to
avoid noise like that.

2. Just using threshold might not be a smart idea.

frame 100 trame 113 fame 124
- 1
50 100 180 200 0 100 150 20( 50 100 180 200
shadow 100 shadow 113 shadow 124
- G 0] K-
50 100 150 200 50 100 150 20¢ 50 100 180
reconst ucted reconst ucted reconstucted

s 100 150 200 = 100 18 200 s 100 180 200

trame 153

trame 143

trame 133

1
& 100 180 200 5 100 150 200 50 100 180 200

shadow 133 shadow 143

1
180 200 80 100 150 200 50 100 15 200

reconstucted

& 100

reconstucted

reconst ucted

180 200

- 180
8 100 180 200 50 100

50 100

180 200

Figure 6: We use a prior motivated by the statistics
of natural scenes



In figure 7, As we can see, that when the tele-
scope body is mostly in shadow, the shadow map
does not indicate so. Therefore, I need some bet-
ter decision to determine if a point is in shadow
or not.

3. The last issue i noticed is that the edge on the
shadow boundary is not smooth enough. That
means I need some edge smoothing procedure to
transition the change for the filled in region.

4. The boundary of the shadow is still not smooth
enough

7 Markov Random Field

To solve the problem discussed above, we can natu-
rally construct our model to a Markov Random Field
model. MRF has been used widely in the computer
vision field [1]. T will first propose the model based
on comparison model [2] where a scene is consist of
F(t) = Lky(t) + Seun(t) * Igun(t) . Let I = {I;;}
denote the observed image, with I;; € {0,255} rep-
resenting the pixel at row i and column j in image I.
Assume the image has dimensions N x M, so that
1<i< Nand1l<j< M. In addition, we also have
an extra parameter ¢ indicating the temporal change.
Therefore, to represent a pixel , we use the notation
I;;:. We have a set of latent variables X = {z;;.}
represents the true image, with x;;+ € {0,255} indi-
cating the value of I;;; with our re-construction. ,
we also know that a single image contains environ-
ment and sun lighting. Therefore, our label x can be
represented as

C1 PC1
X(t) = Lsky + C2 PC? * Ssun(t)
C3i PC3
For every pixel at a given time t
C1 PCl (Z,])
Lij,t = ISky(i7j7t) + €2 PCQ(Zv.]) * Sy
CBi PC3(17])

As shown in Figure in 7, each (internal) x;j; is
linked with four immediate neighbors in a single
image and also linked with the same pixel before
the frame and the pixel after the frame, denoted
as Li—1,5,ts Lid1,5,ty Li,j—1,ts Vi j+1,tLi,jt—1, Li g t+1,
which together are denoted wn(; ;). Pixels at the
borders of the image (with i € 1, N or j € 1, M) also
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Figure 8: MRF model for a pixel x;;; and its Neigh-
bors

have neighbors denoted wx;,j¢), but these sets are
reduced in certain way.

This construction have to types of cliques. First
type is associate with {z; ;+,I; ;+}. We choose an
energy function to model this term:

For a given x; j

Exr=> llwiji— il

7,7,t
a1 PC(i, )
Eeijo = HIsky(ivj»t) + C2 PCy(i,5)
cst PCs(i, j)

1
P(X, I) = Zexp (—EX’[)

The second type of clique is {z;,z;} where i and j are
the indices of neighboring pixels in z y; j 1), therefore,
the energy function means adding smoothness to the
labeling which can be represented as

E _Ssun(Q)||2

>

PyAET N (i,5,t)

Wpq | |Ssun (p)

TN

Therefore, In our energy function, we have to solve

for the following terms:

Iy = A basis image for the sky term
PC 2,3 = The first,second and third principle
component for the sun term
c1,2,3 = The first three coefficient principle
component corresponding to it PC
Ssun(t) = The shadow matrix with
respect to the change in time t)

E(ILX,C,N)=n> Exi+» BEsy.,,
X,1 iyjst

However, I was not able to finish this part of the

project for now. However, I still think this is a novel

proposal and worth trying.

8 Conclusion

Time lapse Images are a new source of data and to use
those data to understand the scene is an interesting
problem . My goal is to look for a compact, intuitive
and factored representation for time lapse sequences
that separate a scene into its reflectance, illumina-
tion, and geometry factors. Therefore, I think this
preliminary approach enable a number of more gen-
eral outdoor scene modeling such as different weather
condition. Also this problem correlated with appli-
cations such as shadow removal, relighting, advanced
image editing, and painterly rendering.

* Ssun(ivjv t) - Ii,j,t”
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